

COURSE OUTLINE

GEOL 110

MINERALOGY/PETROLOGY

90 HOURS 3 CREDITS

PREPARED BY:

Joel Cubley, Instructor

DATE: <u>December 17, 2015</u>

APPROVED BY:

Margaret Dumkee, Dean

DATE: ____December 17, 2015 _____

YUKON COLLEGE

Copyright December, 2015

All rights reserved. No part of this material covered by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, traded, or rented or resold, without written permission from Yukon College.

Course Outline prepared by Joel Cubley, 17 December 2015.

Yukon College P.O. Box 2799 Whitehorse, YT Y1A 5K4

APPLIED SCIENCE AND MANAGEMENT DIVISION GEOLOGY 110 3 Credit Course

MINERALOGY/PETROLOGY

INSTRUCTOR:	Dr. Joel Cubley
OFFICE HOURS: OFFICE LOCATION:	Mondays 1–3 p.m. T1090
TELEPHONE/E-MAIL: FAX:	465-8605 / jcubley@yukoncollege.yk.ca
COURSE OFFERING: DAYS & TIMES:	January 7 – April 27, 2016 Lecture: Tuesday/Thursday, 10:30 a.m 12:00 p.m. (T1083) Lab: Wednesday 1 p.m. – 4 p.m. (T1090)

COURSE DESCRIPTION:

This course focuses on the structure and chemical makeup of Earth materials, specifically the physical and chemical properties of minerals on both macroscopic and microscopic scales. Students will learn how to identify rocks and rock-forming minerals contained in hand samples, and how to manipulate rock classification schemes for igneous, sedimentary, and metamorphic rocks. Basic principles of mineralogy (crystal systems, chemical and physical properties) will be explored, as well as elementary petrological theory. Investigations will be framed in light of characteristic geologic environments, many of which can be found in the Yukon. Students will be given an introduction to polarized light microscopy and how it can augment hand sample rock and mineral identification.

LEARNING OUTCOMES:

Upon successful completion of the course, students will have demonstrated the ability to:

1) Correctly identify common minerals using a combination of hand sample and thin section properties, and relate those properties to their crystal structures and chemistry.

2) Describe the types and relative abundances of phases in a rock based on observations from hand specimens and thin sections.

3) Manipulate petrological classification schemes for igneous, sedimentary and metamorphic rocks based on mineral proportion and textural information.

4) Predict what minerals should be stable and likely to be found in a variety of environments (sedimentary, igneous, metamorphic).

5) Apply an understanding of simple igneous systems, including the use of binary and ternary phase diagrams in interpreting igneous rock petrogenesis.

6) Use metamorphic mineral assemblages, textures, and an understanding of mineral reactions and chemical equilibrium to constrain deformation history and P-T conditions.

DELIVERY METHODS/FORMAT:

This course consists of two 90-minute lectures and one 3-hour lab period per week. The lecture schedule included in this course outline details the major topics covered and when those topics will be presented throughout the course. Please note that this schedule will likely be modified throughout the term, as some topics may not be finished within the predicted lecture time.

PREREQUISITES:

Successful completion of GEOL105 and/or permission from the instructor.

COURSE REQUIREMENTS/EVALUATION:

Attendance and Participation

Students are strongly encouraged to attend all lectures and laboratory exercises. The laboratory assignments are intended to both reinforce and build upon lecture concepts, and full participation is vital to student success. **Under no circumstances is food or drink (including water) to be taken into the laboratories.**

Assignments

Weekly lab exercises will be due at the start of the following lab section. In addition to these exercises, students will be assigned a number of short theory assignments for the lecture segment of the course. Late work will not be accepted, with no exceptions.

Tests/Exam

Any student who is absent from a test or exam for legitimate reasons will be eligible to write a deferred exam. Please note that excuses such as car trouble, vacation travel, oversleeping, and misreading the test schedule are not considered legitimate reasons and do not qualify the student for a deferred exam. For missed exams, the student must contact the instructor within 48 hours of the missed exam by phone or email. For missed final exams, students must contact the Chair of the School of Science. Any deferred exams will be scheduled by the Chair.

Evaluation

Tests and Assignments	Weight	Dates
Weekly Lab Assignments	40% (4% each)	Due at the start of each subsequent lab
		section.
Lecture Midterm Exam	10%	During scheduled lab time in the sixth week
		of classes.
Lab Final Exam	20%	During scheduled lab time in the final week
		of classes.
Final Exam	20%	During exam period, as scheduled by
		registrar.
Lecture Theory Assignments	10% (2.5%	Assignment 1: Due January 26th
	each)	Assignment 2: Due February 16th
		Assignment 3: Due March 17th
		Assignment 4: Due April 7th
Total	100%	

The letter-grading scheme used in this course is the standard college scheme. Final grades will be rounded up to the nearest decimal place and assigned a letter grade based on this scheme. Grades will not be raised in order to facilitate a better overall grade standing at the end of the course. Final grades will be changed in the event that an error in grade addition or entry occurs. In such a case, students are asked to contact the instructor immediately. The College policy on grading and related matters is described in the "Student Evaluation, Grades, and Records" section of the current College Calendar.

Plagiarism

Plagiarism involves representing the words of someone else as your own, without citing the source from which the material is taken. If the words of others are directly quoted or paraphrased, they must be documented according to recommended document style. The resubmission of a paper for which you have previously received credit is considered a form of plagiarism.

Plagiarism is academic dishonesty, a serious academic offence, and will result in you receiving a mark of zero (F) on the assignment or the course. In certain cases, it can also result in dismissal from the College.

Writing Centre

All students are encouraged to make the Writing Centre a regular part of the writing process for coursework. Located in C2231 (adjacent to the College Library), the Writing Centre offers half-hour writing coaching sessions to students of all writing abilities. Coaching sessions are available in person and through distance technologies (e.g. Skype or phone plus email). For further information or to book an appointment, visit the Centre's website: <u>dl1.yukoncollege.yk.ca/writingcentre</u>.

STUDENTS WITH DISABILITIES OR CHRONIC CONDITIONS:

Reasonable accommodations are available for students with a documented disability or chronic condition. It is the student's responsibility to seek these accommodations. If a student has a disability or chronic condition and may need accommodation to fully participate in this class, he/she should contact the Learning Assistance Centre (LAC) at (867) 668-8785 or lassist@yukoncollege.yk.ca.

REQUIRED TEXTBOOKS/MATERIALS:

Klein, C. and Philpotts, A. 2012. Earth Materials. Cambridge University Press, Cambridge, UK. 552 p.

EQUIVALENCY/TRANSFERABILITY:

No transfer agreements have yet been established for GEOL110.

Tentative 2016 Mineralogy/Petrology Topics

Date	Topics	Recommended
		reading*
January 7 th	Course introduction; physical properties of minerals	Ch. 2 (p. 16-24)
January 12 th	Electronic configuration of atoms and ions, bonding and the periodic	Ch. 3
	table; radioactive decay, instrumental methods for characterization	
	of minerals	
January 13 th	Lab 1: Mineral formulas, analyses, and stoichiometr	<u>y</u>
January 14 th	Fundamentals of crystal structures: atomic vs. ionic radii,	Ch. 4
	coordination number, Pauling's rules, controls on atomic	
	substitutions	
January 19 th	Symmetry elements and operations, crystal systems, crystallography	Ch. 5
4	notation	
January 20 th	Lab 2: Crystal symmetry	I
January 21 st	Miller indices, twinning, space groups, stereographic projections	Ch.5
*January 26 th	Introduction to microscopy (Part I) – interaction of light with	Ch. 6
th	minerals, polarization, refraction	
January 27 th	No lab session (Mineral Exploration Roundup)	<u> </u>
*January 28 th	Introduction to microscopy (Part II) – birefringence and retardation,	Ch.6
and and	color and pleochroism, extinction angles	
February 2 nd	Optical indicatrices I: the uniaxial indicatrix	
February 3 rd	Lab 3: Introduction to polarizing microscopes and optical micro.	scopy – relief,
The state	birefringence, Becke lines, thin section sketches	
February 4 th	Optical indicatrices II: the biaxial indicatrix	Ch. 6
February 9 th	Igneous minerals (Part I): silicate mineral groups, feldspars, micas,	Ch. 7
T I toth	quartz	
February 10	Lab 4: Uniaxial and blaxial optic signs, 2V angles, length fast/	length slow
February 11	Igneous minerais (Part II): onvine, chinopyroxene, orthopyroxene,	Cn. /
Fohmony 16 th	Midterm Even Deview	n/o
repruary to		11/a
February 17 th	Lab 5: Crystal nucleation from an aqueous solution and a sim	ulated melt
February 18 th	Midterm Lecture Exam	
Feb. 23/24/25	No classes (Reading Week)	
March 1 st	Genesis of igneous melts, melting points, eutectic diagrams, lever	Ch. 8
la land	rule	
March 2 nd	Lab 6 - Felsic igneous rocks in thin section and hand so	imple
March 3 rd	Properties of melts, magma ascent and differentiation, cooling and	Ch. 8
No 1 oth	heat conduction, Stokes Law, immiscible liquids	<u>(1 0 (020 050)</u>
March 8 th	Igneous rock classification and modes of occurrence	<u>Ch. 9 (238-258)</u>
March 9 th	Lab $7 - Mafic igneous rocks in thin section and hand sa$	mple
March 10 th	Igneous rocks and their plate tectonic settings	Ch. 9 (258-287)
March 15 th	Nietamorphic minerals (Part I): alumnosilicates, garnet, staurolite,	Ch. 13
No 1 deth		
March 16 th	$Lab \ \delta$ – Metapelites in this section and hand sample	2 Ch. 12
March 17 th	Metamorphic minerals (Part II): metamorphic amphiboles	Ch. 13

	(actinolite, tremolite, glaucophane), pyroxenes (diopside,		
	omphacite), wollastonite		
March 22 nd	Introduction to metamorphic petrology: prograde vs. retrograde	Ch. 14	
	reactions, Le Chatelier's principle, thermodynamics and Gibb's		
	phase rule, grade vs. facies, crystallographic facies		
March 23 rd	Lab 9 – Metabasites and calcsilicates in thin section and hand sample		
March 24 th	AFM diagrams and projections: tie line flips and terminal reactions,	Ch. 14	
	petrogenetic grids, AFM/ACF diagram construction		
March 29 th	Geothermobarometry and phase equilibria: exchange versus net-	Ch. 14	
	transfer reactions, partition coefficients, T-X diagrams,		
	thermodynamic forward modelling vs. traditional thermobarometry		
March 30 th	Lab 10 – Siliciclastic and carbonate rocks in thin section and hand sample		
March 31 st	Sedimentary rock-forming minerals and distinguishing features	Ch. 10	
April 5 th	Siliciclastic sedimentary rocks – classification, occurrence and plate	Ch. 10	
_	tectonic significance		
April 6 th	Final lab exam review period		
April 7 th	Carbonate sedimentary rocks - classification, occurrence and plate	Ch. 10	
	tectonic significance		
April 12th	Lecture Final Exam Review	n/a	
April 13 th	Final Lab Exam		

*All recommended readings from Klein and Philpotts (2013).