An Exploratory pXRF Analysis of Non-Vitreous Igneous Artifacts From the Little John Site, Yukon Territory

by

Jordan D. Handley

B.A., Simon Fraser University, 2013

Thesis Submitted in Partial Fulfillment of the Requirements for the Honours Degree of Bachelor of Arts

in the

Simon Fraser University / Environment / Archaeology Rudy Reimer/Yumks

© Jordan D. Handley 2013 SIMON FRASER UNIVERSITY Fall 2013

All rights reserved.

However, in accordance with the *Copyright Act of Canada*, this work may be reproduced, without authorization, under the conditions for "Fair Dealing." Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately.

Approval

Name:	Jordan D. H	landley
Degree:	Bachelor o	f Arts Honours Degree (Archaeology)
Title of Thesis:	An Explora Igneous Ar Territory	tory pXRF Analysis of Non-Vitreous tifacts from the Little John Site, Yukon
Examining Committee:	Chair:	
Firstname Surname Senior Supervisor Assistant/Associate/Profess	sor	
Firstname Surname Supervisor Assistant/Associate/Profess	sor	
Firstname Surname Supervisor Assistant/Associate/Profess	sor	
Firstname Surname Supervisor Assistant/Associate/Profess	sor	
Firstname Surname Internal Examiner Assistant/Associate/Profess School/Department or Facu	sor Ity	
Firstname Surname External Examiner Assistant/Associate/Profess Department University	sor	
Date Defended/Approved:		

Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the non-exclusive, royalty-free right to include a digital copy of this thesis, project or extended essay[s] and associated supplemental files ("Work") (title[s] below) in Summit, the Institutional Research Repository at SFU. SFU may also make copies of the Work for purposes of a scholarly or research nature; for users of the SFU Library; or in response to a request from another library, or educational institution, on SFU's own behalf or for one of its users. Distribution may be in any form.

The author has further agreed that SFU may keep more than one copy of the Work for purposes of back-up and security; and that SFU may, without changing the content, translate, if technically possible, the Work to any medium or format for the purpose of preserving the Work and facilitating the exercise of SFU's rights under this licence.

It is understood that copying, publication, or public performance of the Work for commercial purposes shall not be allowed without the author's written permission.

While granting the above uses to SFU, the author retains copyright ownership and moral rights in the Work, and may deal with the copyright in the Work in any way consistent with the terms of this licence, including the right to change the Work for subsequent purposes, including editing and publishing the Work in whole or in part, and licensing the content to other parties as the author may desire.

The author represents and warrants that he/she has the right to grant the rights contained in this licence and that the Work does not, to the best of the author's knowledge, infringe upon anyone's copyright. The author has obtained written copyright permission, where required, for the use of any third-party copyrighted material contained in the Work. The author represents and warrants that the Work is his/her own original work and that he/she has not previously assigned or relinquished the rights conferred in this licence.

Simon Fraser University Library Burnaby, British Columbia, Canada

revised Fall 2013

Abstract

Portable x-ray fluorescence was performed on a sample of artifacts exhibiting basaltic attributes from the Little John site, Yukon Territory. This research assessed the potential of this method on archaeological basalts. Results of this analysis are tentative, as basalt and other non-vitreous igneous source locations are unknown, and largely unexplored, within the region. However, the characterization of nine statistically distinct lithic groups, with varying degrees of confidence, suggests the existence of discrete source locales for some of the defined lithic groups. Investigation of spatial and temporal patterns has revealed interesting patterns, particularly for the Nenana/Chindadn component. This research suggests that there is great potential in the pXRF analysis of basaltic and other more homogenous igneous materials. Furthermore, this method of analysis indicates high potential for intra- and inter-site interpretation particularly regarding the prehistoric movement and use of such materials. Possibilities for further interpretation and advanced understandings of archaeological basalts within the subarctic and Beringian contexts relies on the discovery of basalt sources and the regional expansion of this data set.

Keywords: portable x-ray fluorescence; basalt; southwest Yukon; Beringian archaeology; provenance studies; archaeometry

Dedication

This thesis is dedicated to our friends along the Yukon-Alaska Borderlands. Their mentorship and support has put my research goals and interests into a much more meaningful context. However, more significantly, their friendship has enriched this process on a personal level beyond measure.

Acknowledgements

This thesis would not have been possible without the support of our friends from the White River First Nations. They have not only graciously allowed me to study these exceptional remnants of their distant heritage but, have guided me through these pursuits with their knowledge and friendship since 2011. I have much appreciation as the recipient of direction from two influential mentors. My advisor, Dr. Rudy Reimer, has been not only supportive but, motivational, particularly during the most overwhelming of times. I am also grateful for his expertise and instruction in the methodologies of x-ray fluorescence. Norman Easton has been a source of constant encouragement. Without the numerous opportunities and Norm's belief in my abilities I would not be where I am today. Finally, to the Little John site, where my love for archaeology was born and where my curiosity of northern North America's most ancient past continues to foster.

Table of Contents

Approval	ii
Partial Copyright Licence	iii
Abstract	iv
Dedication	v
Acknowledgements	vi
able of Contents	. vii
ist of Tables	ix
ist of Figures	Х

Char	oter 1. Introduction	1
1.1.	Archaeological Background	1
1.2.	The Pleistocene Environment	3
1.3.	Stratigraphic Context	4
1.4.	Culture-Historical Sequence	7

Chap	oter 2.	Research Questions and Study Background	8
2.1.	Resea	rch Questions	8
2.2.	Study I	Background:	9
	2.2.1.	Beringian Sourcing History	9
	2.2.2.	Basalt Source Survey	9

Chap	oter 3. Materials and Methods	13
3.1.	Little John Basalt Sample Selection	13
3.2.	Visual Characterization of the KdVo-6 Basalt Sample Assemblage	13
3.3.	Portable X-Ray Fluorescence and Methods	14
	3.3.1. Introduction to the Technology and the Instrument	14
	3.3.2. The pXRF of Archaeological Basalts and Other Igneous Materials	15
	3.3.3. Settings and Procedures	15
3.4.	Analytical Methods	16

Chap	oter 4.	Results	17
4.1.	Charao	terization of Archaeological Samples	19
	4.1.1.	Andesite Group A	20
	4.1.2.	Basalt Groups A, B, C, D & E	20
	4.1.3.	Rhyolite Groups A & B	23
	4.1.4.	Unknown Group	23
4.2.	Source	Samples Assessed	26

Chap	oter 5.	Discussion	28
5.1.	Intra-S	Site Patterning	28

5.2.	Conclusion	33

References 35

Appendix A.	PXRF Elemental Data	. 39
		. 00

List of Tables

Table 4.1 Principal Component Eigenvectors	. 18
Table 4.2 Principal Component Eignvalues	. 19
Table 5.1 Counts and Standardized Residuals for Source Group and Lobe	. 29
Table 5.2 Counts and Standardized Residuals for Source Group and Artifact Type	. 29
Table 5.3 Counts and Standardized Residuals for Source Group and Stratigraphic Level	. 30

List of Figures

Figure 1.1 The General Location of the Little John site (Easton 2010:44)	2
Figure 1.2 Ariel View of KdVo-6 from the Southwest (Easton 2010:44)	3
Figure 1.3 Zonal Division of KdVo-6 (Easton & MacKay 2008:337)	4
Figure 1.4 Representative Stratigraphic Profile of the West Lobe (Easton 2009:52)	6
Figure 1.5 Respresentative Stratigraphic Profile of the East Lobe (Easton 2007:46)	6
Figure 2.1 Map of Basalt Survey Locales	10
Figure 2.2 Sanpete Creek Location	11
Figure 2.3 Dry Creek Location	11
Figure 2.4 White River Location	11
Figure 2.5 Beaver Creek Location	11
Figure 4.1 Principal Component Analysis Exhibiting Proposed Lithic Groups	17
Figure 4.2 Correlation of Elements for PC1	18
Figure 4.3 PCA Eigenvalue Screeplot	18
Figure 4.4 Bi-plot Demonstrating the Relationship Between Pc1 and PC2	20
Figure 4.5 Scatterplot Indicating Group Characterization for Zr and Y	21
Figure 4.6 Scatterplot Indicating Group Characterization for Zr and Sr	21
Figure 4.7 Scatterplot Indicating Group Characterization for Sr & Rb	22
Figure 4.8 Scatterplot Indicating Group Characterization for Nb & Rb	22
Figure 4.9 Andesite Group A-Kdvo-6:3255 (proximal segment of a straight based lanceolate point)	24
Figure 4.10 Basalt Group B-KdVo-6:2711, 2841, 2710 (large refit scraper on blade-like flake)	25
Figure 4.11 Basalt Group B-KdVo-6:2921 (nearly complete biface; Chindadn Type 1)	25

Figure 4.12 Basalt Group C-KdVo-6:758 (bifacial preform)	25
Figure 4.13 Basalt Group D-KdVo-6:2703 (retouched blade)	26
Figure 4.14 Bi-Plot Indicating Elemental Distribution of Source Samples within the Principal Component Analysis	27
Figure 5.1 KdVo6:96-Andesite Group A: Artifact of the Chindadn Complex	31
Figure 5.2 KdVo6:97-Andesite Group A: Artifact of the Chindadn Complex	31
Figure 5.3 KdVo6:1139-Andesite Group A: Artifact of the Chindadn Complex	31

Chapter 1.

Introduction

1.1. Archaeological Background

The Tanana River valley of the Alaskan and Canadian western subarctic has been a region of extensive archaeological investigation for decades. It consists of some of the New World's most ancient remnants of human activity. The valley's prehistory dates from the terminal Pleistocene, to the most recent past in which occupants were the direct ancestors of contemporary aboriginal bands. In 2002, the discovery of Borden site KdVo-6 in the Yukon-Alaska borderlands, extended the archaeology of this region to encompass not only the lower and middle Tanana valley, but the upper extension as well (Yesner et al. 2011:308). A segment of Norman Alexander Easton's long-term project, the Scottie Creek Culture History Project, which had begun ten years prior, included the field survey that led to the initial identification of the site (Easton & MacKay 2008:33).

KdVo-6 is situated on a hillside meters from the frequently traveled, historically significant, Alaska Highway. It is approximately 12 km northwest of the village of Beaver Creek, Yukon Territory, and only 2 km southeast of the international American-Canadian border. The site is located in an area known locally as *Haah Tu Taiy*, roughly meaning "trail at the end of hill" in the Scottie Creek dialect of Upper Tanana *Dineh* language (Easton & MacKay 2008:33). KdVo-6 overlooks a vast valley, within which lies the upper reach of *Cheejil Niik*, translating in English to "Grayling Creek", however, it is popularly referred to as Mirror Creek by the non-indigenous (Easton et al. 2011:289).

Figure 1.1 The General Location of the Little John site (Easton 2010:44)

The cultural occupations at KdVo-6 date to the late Pleistocene/early Holocene transition in which initial colonizers of Beringia are reflected in the site's earliest archaeological component. The site was occupied into the most recent past and continues to be of use by the local Scottie Creek Band of the White River First Nations, as a hunting camp and lookout.

Once site significance was established in 2006, and following consultation with the White River First Nation, KdVo-6 was named the Little John site (Easton et al. 2011:289). Referred to in his own language as *Klaa Dii Cheeg*, ("His Han Drops"), Little John (also, White River Johnny), along with his ancestors and descendants, have, since time immemorial, utilized this place as a hunting camp and lookout (Easton et al. 2011:289).

Figure 1.2 Ariel View of KdVo-6 from the Southwest (Easton 2010:44)

1.2. The Pleistocene Environment

The remnants of glacial activity dominate Little John's surrounding landscape. During the Pleistocene, the Nutzotin-Wrangell-St. Elias Mountain chain marked the beginnings of what is locally referred to as the McConnell Glaciation, and more universally known as the Late Wisconsin McCauly glacial advance. It terminated at the McCauley Ridge approximately 50 km to the southeast of the site (Easton et al. 2011:291; Rampton 1971:286-288). Rapid recession of this advance has been dated to c. 13,500 RCYBP (c. 16,000-16,800 cal. BP) and the region was ice free by 11,000 RCYBP (c. 12,800-13,000 cal. BP) (Easton et al. 2011:291; Rampton 1971:294).

The glacial evidence supports that Little John was located within the boundaries of the former ice-free Beringian landscape. The addition of abundant remains of Pleistocene fauna, including *Bison*, *Equus*, *Mammuthus*, and *Rangifer*, deposited as close as a mere kilometer from the site, and throughout the Scottie Creek and Mirror Creek valleys, further supports Little John's Beringian context (Easton and MacKay 2008:33).

1.3. Stratigraphic Context

The geologic and stratigraphic contexts of Little John are heavily influenced by both glacial and periglacial processes. The stratigraphic sequence begins with a basal regolith followed by a layer of sparse glacial till, a result of the maximum of Mirror Creek's glacial advance (Easton and MacKay 2008:35). The till, or loess sediments, vary in thickness distribution across the site, ranging from a few centimeters, to over 4.5

4

meters (Easton et al. 2011:291). Two distinct brunisol horizons follow the loess horizon (designated as B2 overlain by B1) (Easton et al. 2011:291). The B2 and B1 horizons are separated by a layer of tephra, also ranging in varying centimeters of thickness. This tephra is the result of the second White River Ash fall dated to over 12,000 years ago (Easton et al. 2011:291). Finally, an organic layer, designated as the O/A horizon, seals the Little John stratigraphic sequence.

Unfortunately, excavations at the Little John site have revealed a much less consistent stratigraphic context than the description above suggests. As a result, site interpretation has been challenging at best. The topographic context of the site ranges from deep swales to eroding cliffs, in part accounting for the discontinuous thickness of loess deposits (Easton et al. 2011:291). To further complicate the stratigraphy are multiple periglacial processes, which occurred in the distant past and continue to alter the strata. These processes include permafrost action, solifluction, colluvial deposition and a presumed mass wasting event.

Due to the undulating topography and resulting variation in sedimentary and geologic nature within the site, five distinct zones have been identified to distinguish between site locales. The West lobe occupies the southwest hillside subjacent to the Wrangell St. Elias Mountains. This zone accounts for the site's most shallow deposits (>30 cm) as well as the most abundant deposits of lithic artifacts.

Alternatively, the East lobe is a deep swale which entrains a large sedimentary package, including a loess deposit greater than 1 m thick. Below this loess deposit is a basal Paleosol complex with a spatial distribution of at least 12 m² (as exposed by the end of the 2010 field season) (Yesner et al. 2011:312). The Paleosol complex has produced a series of confident radiocarbon dates, from 8850 to 10,000 radiocarbon years before present (14C BP) (ca. 10,000-11,480 cal BP) (Yesner et al. 2011:312). The Paleosol complex has yielded an assemblage of lithic materials as well as an exceptional abundance of well preserved faunal remains.

Figure 1.4 Representative Stratigraphic Profile of the West Lobe (Easton 2009:52)

The remaining three lobes have been less productive than the east and west locales. The Permafrost lobe is a slope running northwest in which frozen ground is encountered only centimeters from the surface year-round (Easton et al. 2011: 292). Central to the site is the Rockfall lobe, where large pebbles and cobbles are deposited throughout the matrix of the B horizons (Easton et al. 2011: 292). Finally, the Swale lobe, a northern extension of the East lobe, exhibits an over 4.5 m deposit of loess and has yet to produce strata of paleosol or regolith (Easton et al. 2011: 292).

1.4. Culture-Historical Sequence

The geographic position of Little John creates an interesting case for the designation of an archaeological culture history. The Tanana River valley sites, commonly located on the Alaskan side of the border, generally follow a framework created for Alaskan-Beringian archaeology. However, an alternative framework for the southwest Yukon is also well developed thus, creating an interesting paradox for the cultural components at the Little John site.

A cultural framework utilizing both the Alaskan and Canadian terminology has been proposed to best suit the prehistoric record at Little John. The simplified timeline for the cultural occupations, from oldest to youngest, is as follows; the Chindadn/Nenana complex of late glacial Beringia (known in the Yukon as the Northern Cordilleran Phase); the Denali complex, also a terminal Pleistocene component (or the Northwest Microblade Tradition respectively); the Little Arm Phase (a phase of Alaskan Denali complex) associated with the early Holocene; the Northern Archaic Tradition (or Taye Lake phase of the Yukon) of the mid-Holocene; this phase is interrupted by the White River volcanic eruption and deposit of ash (ca. 1,900-1,200 years BP); the Aishiak phase/Late Prehistoric (known in Alaska as the Athapaskan phase; the Bennet Lake phase/Transitional Contact Period; the Historic Period/20th century; the final component is the Contemporary Period (which relates to the current use of the site by members of the local Scottie Creek Band of the White River First Nations, and their relatives).

Chapter 2. Research Questions and Study Background

2.1. Research Questions

Little is known on the procurement and distribution of basalt in the North American western subarctic. This research was initiated as a basalt provenance study for lithic artifacts at the Little John site to begin the exploration of these unknowns. The overarching inquiry is to assess whether or not there are distinct basalt source materials at the site, and if so, what is the potential for spatial and temporal patterning of basalt procurement and use. Other questions include; are distinct basalt source materials identifiable at the site using a visual typology; what is the potential for portable x-ray fluorescence (pXRF) technology as it pertains to the geochemical analysis of archaeological basalts; and, finally, can pXRF be utilized to asses not only the accuracy of visual classifications for basaltic materials but, also for the determination of distinct source materials.

First, a small field survey was conducted to assess if local basalt sources are present within close geographic range of the site, as well as to attain potential source materials for visual and geochemical classification. Secondly, a sample of lithic artifacts from the Little John site with basalt-like attributes was assembled. The sample assemblage was visually classified to assess to the maximum amount of distinct source materials. The accuracy of the visual typology was tested using pXRF analysis. Furthermore, these signatures were utilized to more definitively determine if there are distinct basalt source materials, if so, how many, and whether intra-site patterning is adherently recognizable.

2.2. Study Background:

2.2.1. Beringian Sourcing History

Obsidian sourcing has, rather recently, gained extensive momentum as a productive field of archaeological research within eastern Beringia (Cook 1995; Goebel et al. 2008; Slobodina et al. 2009; and Speakman et al. 2009). Many obsidian sources utilized in archaeology sites of this region are well established and long studied. Various geochemical methods have been employed on much of the obsidian record and thus, have led to a comprehensive data set. These studies have led to inferences regarding the prehistoric movement and procurement of exotic lithic materials and those who have manufactured them.

The study of basalt artifacts, and other non-vitreous igneous stone, commonly interpreted as local raw materials, has until now received very little exploration. This research aims to assess the potential of utilizing geochemical analysis on material of this nature within the eastern Beringian context as well as expand the current understandings of local raw material use within the region.

2.2.2. Basalt Source Survey

Archaeologically, basalt is an abundant lithic material, particularly in the western subarctic. It is generally recognized as being derived from nearby creek and river beds or small easily accessible outcrops (Heffner 2002:60; Easton et al. 2011:299). The Little John basalt is expected to originate from any of the multiple identified volcanic outcrops in the Tanana Valley, likely between the Chisana and Nabesna rivers, Alaska (Easton et al. 2011:299), within the boundaries of the Wrangell St. Elias National Park and Preserve. Such outcrops, as well as the many well-known obsidian sources, are the result of the extensive volcanic activity of the Wrangell volcanic field (WVF). Large expanses of the WVF are fields of thick piles of flat lying lava flows, predominantly composed of basalt, andesite and dacite (Richter et al. 1991:30).

Two main watersheds compose the drainage of the Wrangell St-Elias Mountains. The Copper River drainage flows north for release into the Gulf of Alaska and the Yukon River drainage flowing northeast into the Bering Strait. In consideration of the Wrangell volcanic activity and the drainage pattern of the Wrangell-St. Elias Mountains, a small survey for local basalt sources (within approximately 40 km of the site) was conducted. Rivers and creeks with north to north-easterly flows were surveyed for basaltic cobbles and pebbles. These survey locales included; Sanpete Creek, the White River, Beaver Creek and Dry Creek (see Figure 2.1 and also Figures 2.2-2.5). Also surveyed was a rock quarry (within a five minute walking distance from the site), in which the geologic history is unknown and is currently used for industrially and commercial practices.

Figure 2.1 Map of Basalt Survey Locales

At the rock quarry locale, five igneous cobbles were recovered. However, whether materials at this site are in a primary context is highly questionable and further investigation into history and origin of this feature is necessary. Only one other potential source sample was attained, this was at the White River locale. The river was accessed using a private road which is in close proximity to the Alaska Highway. The Sanpete, Dry and Beaver Creek survey locales were all accessed similarly to the White River and again, in close range of the highway. No materials were recovered from these locations.

Figure 2.2 Sanpete Creek Location

Figure 2.3 Dry Creek Location

Figure 2.4 White River Location

Figure 2.5 Beaver Creek Location

The lack of source materials recovered from this survey may be the result of high freshwater levels from excess precipitation, in both the forms of snow and rain, for the winter and spring months of 2012 in the survey area. High water levels may therefore, account for a lack of visibility of the materials. It may be possible that the exact areas surveyed did not have a high abundance of materials and a second survey is needed to explore them further.

A future survey may include the Steele Creek-Steele Glacier area in the Yukon Territory approximately 60 km southeast of the Alaska border (Richter et al. 1991:41), the southern Alsek River (Richter et al. 1991:41), the Rocker and Sonya Creeks just west of the border (Richter et al. 1991:39), and finally, the Burwash Basin in the Yukon Territory (Cole and Ridgway 1993:153).

As the surveyed creek and river beds, presumed to have high potential for locally derived basalt materials, revealed no exclusive sources, and the locales suggested to be of significance for future survey relate to major basalt outcrops, it may be appropriate to at least entertain ideas of meaningful source areas for basaltic materials. That is, instead of basalts being exploited advantageously from nearby stream beds, perhaps more culturally-based decisions are at work behind their exploitation and use. For instance, more significant attachment or relationships to places where culturally-modified basalts are derived and where they are further manufactured could be explored (Bradley 2000:81). Future survey and subsequent geochemical analysis beyond what is included in this study, may potentially reveal more on these possibilities.

Chapter 3. Materials and Methods

3.1. Little John Basalt Sample Selection

The sample prepared for visual classification and pXRF analysis consisted of 259 basalt-like artifacts from 12 1x1 meter excavation units at the Little John site. The sample was selected on a judgmental basis to ensure even coverage across the two lobes of the site, for comparison between the lobes, as well as to acquire the largest possible assemblage. A 2x2m unit and 1x2 m unit from each the East and West lobes were chosen for their high proportions of basalt materials. Other factors including, the amount of materials associated with the oldest stratigraphic layers, type artifacts for proposed cultural components, association with hearths and association with radiocarbon dates, influenced the sample selection. Added to the sample assemblage was a collection of formal, diagnostic artifacts.

3.2. Visual Characterization of the KdVo-6 Basalt Sample Assemblage

The primary objective of this typology was to visually determine the maximum potential amount of distinct raw material types with basaltic attributes which were exploited for the manufacture of lithic artifacts recovered at the Little John site. The three main attributes utilized to distinguish between different source materials were grain size, texture, and Munsell colour. The visual typology suggests 18 distinct source materials including various basalt, dacite and andesite types occurring within the 263 sample assemblage.

The categorization of the samples has revealed an overall larger abundance of artifacts and a consistency of lithic material quality in the West lobe in comparison to the East. Lithic artifacts are more sparse in the East lobe and a larger variety of visually distinct raw materials are found. There is an interesting paradox in fewer lithic remains with a higher variety of lithic material. The application of pXRF will potentially reveal more on these observations. The typology has not been overly conclusive in the designation of raw material type based on similarities in grain size, texture and colour. This too will be tested using the geochemical signatures resulting from pXRF analysis.

The application of pXRF spectrometry will determine if the typology proposed is accurate in distinguishing between specific raw material source groups. However, should the geochemical data not correlate with the visual classification, this will suggest that raw material and distinct source materials can only be identified via the application of trace element analysis.

3.3. Portable X-Ray Fluorescence and Methods

3.3.1. Introduction to the Technology and the Instrument

Non-destructive x-Ray fluorescence spectrometry is a common method used in archaeological provenance studies. It has most commonly been used for obsidian sourcing studies, however, its application on other non-vitreous igneous materials is growing (Lunblad et al. 2008; Lundblad et al. 2011; Johnson 2011; Grave et al. 2012). Portable XRF instruments have also been gaining recognition with their abilities to produce accurate and reliable results (Shackley 2008; Shackley 2011; Philips and Speakman 2009). It's been proven that these instruments have the ability to produce results comparable to alternative sourcing techniques including, energy dispersive x-ray fluorescence (EDXRF) and neutron activation analysis (NAA) (Ioannis & Zacharias 2011; Glascock 2011).

There are many additional benefits to pXRF analysis including; 1) it is nondestructive, 2) it requires minimal preparation, 3) it is time efficient, 4) it is easy to use, and 5) it is cost-effective (Shackley 2011:19). However, to ensure reliability there are highly recommended protocols to consider; sample surfaces should be free of irregularities; a minimum sample size is 2.0 mm; frequent instrument maintenance and calibration; and the integration of internationally recognized standards to analyses (Shackley 2011:9).

3.3.2. The pXRF of Archaeological Basalts and Other Igneous Materials

While there are great benefits and immense potentiality for pXRF analysis on basalts, there are additional considerations to address. Of greatest concern is the relatively rapid chemical weathering of archaeological basalts in which the original compound of the stone is dissolved by naturally occurring acids. This process is heightened in humid and acidic environments (Lundblad et al. 2008:3). The acidic nature of boreal forests in the western subarctic is therefore, problematic to the pXRF analysis of the Little John sample assemblage. The extent of weathering on archaeological basalts in the western subarctic is not well known.

The effects of chemical weathering and leaching of basalts, however, have been assessed by XRF studies (Lundblad et al. 2008; Gauthier & Burke 2011; Potts et al. 2006). Gauthier and Burke have suggested that major elements are more affected by chemical weathering than are trace elements (2011:3). Furthermore, Lundblad et al. have suggested that Mid-Z elements are only affected by weathering in the most extreme cases (2011:77). Similar to weathering, surface patination is another concern. This process is additive verses reductive (Lundblad et al. 2011:66), having effects of similar magnitude on the geochemical signatures.

Finally, it is important to note that basalts are much more homogeneous in their major and trace element compositions than obsidians (Lundblad et al. 2011:65). Also complicating the sourcing of basalts is the lack of geographic distinctiveness due to the continuous and expansive nature of mafic volcanic eruptions (Lundblad et al. 2011:65). Considering that no geographic sources have been identified in the study area, the any lithic groups revealed in this analysis will be tentative. Furthermore, the effects of weathering and patination processes were addressed during this analysis.

3.3.3. Settings and Procedures

In acquiring geochemical signatures for the Little John Site basalt sample assemblage and six potential source samples, pXRF spectrometry was performed in facilities at Simon Fraser University, Burnaby, B.C. The instrument used in this study was a Bruker AXS Tracer III-V portable XRF analyzer. Variable power settings are possible with the instrument with a resolution of approximately 170eV FHWM for 5.9 keV X-rays (Reimer 2012: 128). The range of power settings allows for simultaneous detection of various elements from the periodic table from sodium (Na) to uranium (U) while counting their densities at 1000 times per second (Reimer 2012: 128).

For this analysis, the instrument was equipped with a rhodium X-Ray tube and silicon-based (SiPIN) detector. Analyses for this study utilized the instruments power setting of 40 keV and 15 UA with a 0.76 millimeter copper filter and a 0.0305 millimeter aluminum filter. Samples were emitted to the X-ray path for a 180 second live time count. Ten elements from the period table were measured and quantified; Manganese (Mn), Iron (Fe), Zinc (Zn) Gallium (Ga), Thorium (Th), Rubidium (Rb), Strontium (Sr), Yttrium (Yr), Zirconium (Zr), and Niobium (Nb). Peak intensities for these elements were calculated as ratios and converted to parts per million.

Shackley's protocols for reliable application and results were utilized (2011). Only samples larger than 2.0 mm were included and smooth flat surfaces were utilized to the greatest degree possible to minimize surface effects. Many of the samples were prepared in an ultrasonic washing machine to remove patination and residual sediment prior to application of pXRF. The standards utilized for this analysis include, basalt (BAMAP01), rhyolite (PER01), and andesite (CHA01).

3.4. Analytical Methods

Following the XRF analyses, spectral data was converted to parts per million (ppm) for the elements listed above. Group delineation was determined by principal component analysis (PCA) and further explored by the aid of bi-plots and scatterplot matrices.

Chapter 4. Results

Distinct lithic groups were suggested by the PCA which assessed five trace elements Rb, Sr, Y, Zr, and Nb (Figure 4.1). Most of the assemblage variation is explained by the first three components, predominantly PC1, which contains 61.6% of the variation (Table 4.1). Eigenvectors indicate that Y, Zr, and Nb are positively correlated in this component (Table 4.1). PC2 contains 17.2 % of the total variation and it is dominated by Sr. Rb, Y, Zr, and Nb, are negatively correlated. Finally, PC3 comprises 13.3% of the remaining assemblage variation and is defined by Rb, whilst exhibiting negative correlations between Y, Zr, and Nb

Figure 4.1 Principal Component Analysis Exhibiting Proposed Lithic Groups

Figure 4.2 Correlation of Elements for PC1

Figure 4.3 PCA Eigenvalue Screeplot

 Table 4.1 Principal Component Eigenvectors

Trace Element	PC1	PC2	PC3	PC4	PC5
RbKa1	0.37206	-0.25164	0.88059	0.0483	0.14311
SrKa1	0.26149	0.94589	0.15788	0.10682	-0.02414
Y Ka1	0.52632	-0.17123	-0.16421	0.29884	-0.75987
ZrKa1	0.50702	-0.11165	-0.37273	0.44082	0.63025
NbKa1	0.50903	-0.01372	-0.1837	-0.83823	0.06571

Component	Eigenvalue	%	Cumulative %	Chi-Square
1	3.0797	61.593	61.593	712.181
2	0.8605	17.209	78.803	245.376
3	0.6651	13.302	92.104	158.54
4	0.2545	5.089	97.194	22.309
5	0.1403	2.806	100	0

 Table 4.2 Principal Component Eignvalues

While the PCA determined statistically significant lithic groups, they were further explored with the aids of bi-plots and scatterplots. Confidence in designating discrete lithic source groups as well as raw material type is challenged by the lack of geographically known sources. The following phase of this research, however, is concerned with the attempts to characterize the suggested lithic groups as well as assign raw material type, regardless of no known sources. Results fare thus, tentative.

4.1. Characterization of Archaeological Samples

Of the 263 artifact samples, nine distinct groups have been recognized. The validity of the visual typology was assessed and utilized to establish visual characteristics of the proposed nine groups. Assigning raw material type was difficult and it is hypothesized that the basalt and andesite groups likely represent varying related and distinct flows ranging from basalt to andesite to andesitic-basalt and so on. No evidence for dacitic groups was revealed during analysis. Alternatively, the rhyolite groups are assigned with a good degree of confidence.

Figure 4.4 Bi-plot Demonstrating the Relationship Between Pc1 and PC2

4.1.1. Andesite Group A

Andesite Group A is demonstrated in nearly all graph representations as a tightly clustered lithic group. Andesite Group A comprises 31% of the overall sample population (*n*=81). It is the lithic group with the most correspondence to a type proposed by the initial visual classification. It can be defined as a fine-grained black andesite containing what could be very small quartz, but more likely feldspar plagioclase, phenocrysts. This lithic group is the most visually consistent as well as distinct pXRF group. It is possible that Andesite Group A is a basalt or a basaltic-andesite, however, the standard CHA-01 suggested the former description versus the latter possibilities.

4.1.2. Basalt Groups A, B, C, D & E

Basalt Group A comprises nearly 12% of the overall sample assemblage (*n*=30) and contains the highest degree of visual variation. However, it can be described as a fine-grained, dark grey-black basalt. Differences in visual characteristics are likely due to chemical weathering, a process in need of further study. This group also has potential to be an andesitic basalt or a weathered andesite. At this stage, a basaltic classification is most fitting. The repetitive graphical overlap between Andesite Group A and Basalt

Group A suggests that differing geochemical signatures may be because they are products of two volcanic flows from the same eruptive center. Alternatively, they could potentially be from the same flow but, were subject to different cooling rates and processes.

Figure 4.5 Scatterplot Indicating Group Characterization for Zr and Y

Figure 4.6 Scatterplot Indicating Group Characterization for Zr and Sr

Figure 4.7 Scatterplot Indicating Group Characterization for Sr & Rb

Figure 4.8 Scatterplot Indicating Group Characterization for Nb & Rb

Basalt Group B, described also as a dark grey-black fine-grained basalt, differs from Basalt Group A predominantly by it's exceptional visual consistency and correlation with the visual typology. Basalt Group B comprises 24 % of the assemblage (n=63) and is designated as a basalt with a good degree of confidence. Basalt Group C, alternatively, is a smaller lithic group, approximately 14% of the overall assemblage (n=36). It can be described as a dark-grey fine-grained basalt with multiple examples of olive grey samples. Thus, a high olivine content is proposed for the group.

Basalt Group D is classified as a black-dark grey, very fine-grained basalt and makes up 8% of the overall sample assemblage (n=21). It is visually and statistically distinct from the other proposed lithic groups. It is very fine-grained, however, there is no indication of dacitic origins for this group and thus, may be a vitreous basalt. Finally, Basalt Group E, the smallest basaltic group (n=4) is less confidently characterized based on the small sample size and variable visual attributes. Two samples are fine-grained black materials interpreted as basalt prior to XRF analysis. However, the third is an olive grey medium-grained, while the final sample is very fine-grained and reddish grey. This group is inconclusive.

4.1.3. Rhyolite Groups A & B

Rhyolite Group A consists of 19 samples and constitutes 8% of the overall assemblage. This group is visually defined as a very-fine grained, grey-dark to grey rhyolite. Rhyolite Group B consists of only three samples and is defined as a fine-grained dark grey rhyolite. The PCA and visual characteristics for Rhyoite Groups A and B support this designation of raw material type. The low proportion of rhyolite in this assemblage is attributed to the original sample selection in which artifacts with basaltic attributes were chosen for analysis. Further geochemical analysis of rhyolitic materials from the Little John site would reveal more results regarding the two proposed rhyolite groups here.

4.1.4. Unknown Group

This unknown group consists of only two artifacts with very different visual characteristics. They do, however, share a similar olive grey colour. The unknown group should be considered as outliers and may not even be igneous in nature. And comprise less than 1% of the overall sample assemblage.

Figure 4.9 Andesite Group A-Kdvo-6:3255 (proximal segment of a straight based lanceolate point)

Figure 4.10 Basalt Group B-KdVo-6:2711, 2841, 2710 (large refit scraper on bladelike flake)

Figure 4.11 Basalt Group B-KdVo-6:2921 (nearly complete biface; Chindadn Type 1)

Figure 4.12 Basalt Group C-KdVo-6:758 (bifacial preform)

Figure 4.13 Basalt Group D-KdVo-6:2703 (retouched blade)

4.2. Source Samples Assessed

Problems regarding the Little John site's nearby 'quarry source' have been discussed, however, four of the five samples from this location appear to be consistent with Basalt Group C. This source may represent a prehistoric lithic procurement area. Alternatively, sources may be in a secondary context, the primary thus, being the true source locale. The final sample collected from the quarry site appears consistent with Basalt Group B.

Figure 4.14 Bi-Plot Indicating Elemental Distribution of Source Samples within the Principal Component Analysis

The White River location is a much more probable basalt source. The one sample recovered from the White River location agrees with Rhyolite Group A. The recovery of only a single sample may be attributed to changes in raw material density over time or the high water levels of the 2012 field season. Nevertheless, a more extensive survey is necessary to assess the potentiality of this source location.

Chapter 5. Discussion

5.1. Intra-Site Patterning

The preceding pXRF analysis has been successful in distinguishing between different source materials of igneous nature at the Little John site. With further refinement and the addition of sample materials, it is probable to hypothesize that increased confidence in group designations would be achieved. How these sources relate to one another, is a significant question to be answered only by the discovery of true lithic sources. Without known sources the results of this analysis remains somewhat inconclusive, however, in combination with visual classification and pXRF characterization, enough confidence has been attained to tentatively suggest the existence of discrete lithic sources.

The visual typology was not able to accurately distinguish between source material groups but, for some cases did prove to have some degree of uniformity with the groups proposed by pXRF. Visual classifications resulted in double the number of source groups in comparison to the geochemical analysis. This implies that while some characteristics, colour for instance, may suggests multiple groups, that a more homogenous elemental structure exists among the source samples. Patination and weathering may also have affected the visual group delineation as well because samples underwent ultrasonic washing following the visual classification. While, the visual classification was ultimately inaccurate, it did act as a reference for validity of the final group designations, which was stronger for some source groups than others.

PXRF analysis is determined necessary to distinguish between archaeological basalts, rhyolites and andesites. The research conducted here also suggests a great deal of potentiality for utilizing pXRF in future basaltic provenance studies. The determination of raw material type to the groups proposed was a challenge however, particularly because of the lack of known-source materials and corresponding samples.

28

				Lobe	
			East	West	Total
Source	Andesite Group	Count	18	89	107
Group	Α	Std.	-0.6	0.3	
		Residual			
	Basalt Group A	Count	9	29	38
		Std.	0.6	-0.3	
		Residual			
	Basalt Group B	Count	12	70	82
		Std.	-1	0.5	
		Residual			
	Basalt Group C	Count	13	28	41
		Std.	1.8	-0.9	
		Residual			
	Basalt Group D	Count	4	17	21
		Std.	0	0	
		Residual			
	Basalt Group E	Count	2	4	6
		Std.	0.8	-0.4	
		Residual			
	Rhyolite Group A	Count	3	16	19
		Std.	-0.4	0.2	
		Residual			
Total		Count	61	253	314

Table 5.1 Counts and Standardized Residuals for Source Group and Lobe

Table 5.2 Counts and Standardized Residuals for Source Group and Artifact Type

			Ar	tifact Type	
			Flake	Formal Tool	Total
Source Group	Andesite Group A	Count	100	7	107
		Std. Residual	0.1	-0.4	
	Basalt Group A	Count	31	3	34
		Std. Residual	0	0.2	
	Basalt Group B	Count	73	9	82
		Std. Residual	-0.3	1.1	
	Basalt Group C	Count	36	0	36
		Std. Residual	0.5	-1.7	
	Basalt Group D	Count	16	3	19
		Std. Residual	-0.4	1.3	
	Basalt Group E	Count	4	0	4
		Std. Residual	0.2	-0.6	
	Rhyolite Group A	Count	17	1	18
		Std. Residual	0.1	-0.3	
Total		Count	277	23	300

						Level	
			B1	B2	Loess	Paleosol Complex	Total
Source Group	Andesite Group A	Count	2	78	6	13	99
		Std. Residual	-1.3	1.4	-2.8	1.1	
	Basalt Group A	Count	3	22	0	2	37
		Std. Residual	0.8	-0.6	1.3	-0.8	
	Basalt Group B	Count	3	63	11	3	80
		Std. Residual	-0.5	1.2	-0.9	-1.7	
	Basalt Group C	Count	4	11	20	5	40
		Std. Residual	1.4	-3.1	4.8	0.6	
	Basalt Group D	Count	2	14	2	2	20
		Std. Residual	1	0.1	-0.8	0	
	Basalt Group E	Count	1	1	3	1	6
		Std. Residual	1.3	-1.5	1.8	0.6	
	Rhyolite Group A	Count	0	13	2	3	18
		Std. Residual	-0.9	0.3	-0.7	1	
Total		Count	15	202	54	29	300

Table 5.3 Counts and Standardized Residuals for Source Group and Stratigraphic Level

It should be restated that the materials likely range from basalts to andesitic basalts to andesites and so on. It is also likely that some groups are attributed to multiple flows of a single eruptive center. Regardless, extensive inductive reasoning has led to the initial raw material designation for these proposed groups. They are open to refinement and exploration. The current designations discussed above, however, are suggested to be the most accurate and probable results achievable, at this point.

Andesite Group A, described is a black andesite with visible silicate phenocrysts. It is an exceptionally visibly distinct group adhering to substantial consistency with the initial visual typology. Black andesites are not unknown for the North American western subarctic (see Dawson 1983 & Box et al. 1993). Whether this group is in fact and andesite or andesitic basalt, it remains the most confidently assigned distinct lithic group. There is a significant increase in this material from the Loess/Paeolsol to the B2 horizon (Table 5.3). There is nothing exceptional about the ratio of formal tools to flakes. However, many of the Andesite Group A formal tools, derived from the additional "formal tool" sub-assemblage, were recovered in the Loess horizon and Paleosol complex, include multiple examples of artifacts pertaining to the Chindadn form (KdVo6:96; KdVo6:97; KdVo6:139) as well as a typical Denali form (KdVo6: 716).

Figure 5.1 KdVo6:96-Andesite Group A: Artifact of the Chindadn Complex

Figure 5.2 KdVo6:97-Andesite Group A: Artifact of the Chindadn Complex

Figure 5.3 KdVo6:1139-Andesite Group A: Artifact of the Chindadn Complex

Basalt groups constitute the largest percentage of the sample assemblage which is to be expected as artifacts were chosen based on basaltic attributes. Some groups are larger than others and there may be more homogeny than is indicated in the current research. Refinement of these groups will only be attainable with known source locations or alternatively, source samples collected in pebble and cobble accumulations (presumably in creek and river beds). The basalt groups have indicated differing degrees of variation between the lobes. For instance Basalt Group C is comparatively more abundant in the East lobe than the West, which is interesting in that there are far fewer lithic remains in the East (Table 5.1). Also of interest is that Basalt Group C consists of no formal tools (Table 5.2) and there is a drastic decrease of this group from the Loess/Paleosol Level to the B2 horizon (Table 5.3). This group exhibits the most dramatic temporal variation for all proposed source groups.

Alternatively, Basalt Group B has a fairly equal distribution between lobes (Table 5.1). This result may indicate some form of unity between site occupants and site activities while also providing a potential indicator of consistency in raw material use across the site. Visually, Basalt Group B is a very typical basalt material.

Also of interest is Basalt Group D, which exhibits a higher proportion of formal tools in comparison to flakes. This inference is reinforced by the visual characteristics of this group as it is a very fine grained basalt. Basalt Group D is thus, of high flaking quality and therefore was utilized, as has been demonstrated, as a prime material for the manufacture of formal and specialized tools. Such artifacts include a microblade (KdVo6:1404), a macroblade (KdVo6:2703), a biface fragment (KdVo6:2112), and a utilized flake (1803). Furthermore, Basalt Group D is equally distributed between the lobes and exhibits some consistency through time (Table 5.1 & 5.3).

Not many inferences were made regarding the rhyolitic groups. They constitute a small percentage of the overall sample population because basalts were of primary interest. However, these groups, particularly Ryolite Group A, were assigned with a fair degree of confidence and further exploration will lead to more definitive descriptions of their roles in Little John site activity and use. Also, the Unknown Group, consisting of two samples, was excluded from further analysis and interpretation.

32

An overarching temporal pattern was also evident in this analysis. All proposed source groups indicated either; a) positive correlations occurring for Loess and B1 and a negative correlation occurring with B2; or b) negative correlations occurring for Loess and B1 and a positive correlation occurring with B2 (Table 5.3). Basalt Group D is the only source group which does not exhibit this pattern, it perhaps may have been an exceptional source material for formal tool manufacture based on its high quality and flakability. Based on these initial explorations, it can be assumed that the pXRF method of geochemical analysis for non-vitreous igneous artifacts has great potential to not only distinguish between distinct source materials but, indicate spatial and temporal patterning.

5.2. Conclusion

The research presented in this thesis supports the pXRF analysis on archaeological basalts. Tentative results regarding temporal and spatial patterning and raw material use at the Little John site is evident in this exploratory study and further analysis will reveal more detailed inferences regarding the role of igneous materials in the southwestern Yukon and eastern Beringia. Furthermore, the distinct source groups suggests that while there are no known lithic sources currently, that intensified regional field survey will eventually lead to these locations in the case of at least some of the proposed lithic groups here.

Evidence suggests that some of these materials, whilst conventionally considered to be procured locally from easily accessible stream and riverbeds, may actually have been acquired from more significant source locations. There is the possibility that certain basaltic and andesitic artifacts from the Little John site are being manufactured from raw materials derived from places of meaning or prehistoric cultural significance. The data and interpretations from Andesite Group A and their relationship with Little John's Nenana/Chindadn component support these notions and call for more rigorous examination of its use at the site.

The materials pertaining to this analysis do not exhibit the same quality and attractiveness as exotic materials, such as obsidians. However, they may be able to aid

the current understandings of prehistoric travel and trade which are being developed by regional obsidian sourcing studies. However, without known geographic sources, basaltic provenance studies will not gain similar momentum. There remains much to be discovered regarding the prehistoric utilization and acquisition of these materials. This research aims to initiate interest in basalt sourcing studies and support the practice of geochemical analyses on archaeological basalts in the North American western subarctic.

References

Box, Stephen E., Elizabeth J. Moll-Stalcup, Thomas P. Frost, and John M. Murphy 1993 Preliminary Geologic Map of the Bethel and Southern Russian Mission Quadrangles, Southwestern Alaska. US Department of the Interior, US Geological Survey.

Bradley, Richard

2000 An Archaeology of Natural Places. London and New York: Routledge.

Cole, Ronald B. & Kenneth D. Ridgway

1993 The Influence of Volcanism on Fluvial Depositional Systems in a Cenozoic Strike-Slip Basin, Denali Fault System, Yukon Territory, Canada. Journal of Sedimentary Petrology.63(1):152-166.

Cook, John P.

1995 Characterization and Distribution of Obsidian in Alaska. Arctic Anthropology. 32(1):92-100.

Dawson, Garnet L.

1983 Geologic Branch Assessment Report. Geology 1:0.

Easton, Norman Alexander

2007 Archaeological Excavations at the Little John Site (KdVo6), Southwest Yukon Territory, Canada 2006. Scottie Creek Culture History Project Research Manuscript, 2011-03. Whitehorse: Northern Research Institute.

Easton, Norman Alexander and Glen R. MacKay

2008 Early Bifaces from the Little John Site (KdV0-6), Yukon Territory, Canada *In* Projectile Point Sequences in Northwestern North America. Roy L. Carlson And Martin Magne, eds. Pp. 263-282. Burnaby, B.C. Simon Fraser University Press.

Easton, Norman Alexander

2010 Archaeological Excavations at the Little John Site (KdVo6), Southwest Yukon Territory, Canada 2009. Scottie Creek Culture History Project Research Manuscript, 2011-03. Whitehorse: Northern Research Institute.

Easton, Norman Alexander, Glen R. MacKay, Patricia Bernice Young, Peter Schnurr, and David Yesner

2010 Chindadn in Canada? Emergent Evidence of the Pleistocene Transition in Southeast Beringiia as Revealed by the Little John Site, Yukon *In*, From the Yenisei to the Yukon: Interpreting Lithic Assemblage Variability in the Late Pleistocene/Early Holocene Beringia. Ted Goebel and Ian Buvit, eds. Texas A&M Press: United States.

Gauthier, Gilles and Adrian L. Burke

2011 The effects of surface weathering on the geochemical analysis of archaeological lithic samples using non-destructive polarized energy dispersive XRF. Geoarchaeology. 26(2):269-291

Glascock, Michael D.

2011 Comparison and Contrast Between XRF and NAA: Used for Characterization of Obsidian Sources in Central Mexico *In*, X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology. M. Steven Shackley, ed. Pp. 161-192. New York: Springer.

Goebel, Ted, R. J. Speakman, and J.D. Reuther

2008 Obsidian from the Late-Pleistocene Walker Road Site, central Alaska. Current Research in the Pleistocene 25, 88-90.

Grave, Peter, Val Attenbrow, Lin Sutherland, Ross Pogson, and Nicola Forster 2012 Non-destructive pXRF of mafic stone tools. Journal of Archaeological Science. 39(6):1674-1686.

Heffner, Ty Alexander

2002 KaVn-2 An Eastern Beringian Tradition Archaeological Site in West-Central Yukon Territory, Canada. Occasional Papers in Archaeology No. 10. Government of the Yukon: Heritage Branch.

Johnson, Philip R.

2011 Elemental Analysis of Fine-Grained Basalt Sources from the Samoan Island of Tutuila: Applications of Energy Dispersive X-Ray Fluorescence (EDXRF) and Instrumental Neutron Activation Analysis (INAA) Toward an Intra-Island Provenance Study. *In* X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology, M. Steven Shackley, ed. Pp. 143-160. New York: Springer.

Liritzis, Ioannis and Nikolaos Zacharias

2011 Portable XRF of Archaeological Artifcats: Current Research, Potentials and Limitations *In*, X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology. M. Steven Shackley, ed. Pp. 109-142. New York: Springer.

Lubland, S. P., P.R. Mills and K. Hon

2008 Analysing Archaeological Basalt Using Non-destructive Energy Dispersive X-Ray Fluorescence (EDXRF): Effects of Post-Depositional Chemical Weathering and Sample Size on Analytical Precision. Archaeometry 50(1):11.

Lundblad, Steven P., Peter R. Mills, Arian Drake-Raue, and Scott Kekuewa Kikiloi

2011 Non-destructive EDXRF Analyses of Archaeological Basalts *In,* X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology. M. Steven Shackley, ed. Pp. 65-80. New York: Springer.

Phillips, Colby and Robert J. Speakman

2009 Initial source evaluation of archaeological obsidian from the Kuril Islands of the Russian Far East using portable XRF. Journal of Archaeological Science. 36:1256-1236.

 Potts, Philip J., Andrew T. Ellis, Peter Kregsamer, Christina Streli, Christine Vanhoof, Margaret West, and Peter Wobrauschek.
 2006 Atomic spectrometry update-X-ray fluorescence. Journal of Analytical Atomic Spectrometry. 21:1076-1107.

Rampton, V.

1971 Late Pleistocene Glaciations of the Snag-Klutlan Area, Yukon Territory. Arctic. 24:277-300.

Reimer, Rudy

2012 The Mountains and Rocks are Forever: Lithics and Landscapes of SKWXWU7MESH UXWUMIXW. Ph.D. dissertation, Department of Anthropology, McMaster University (Paper 6735).

Richter, D.H., J.G. Smith, M.A. Lanphere, G.B. Dalrymple, B.L. Reed & Nora Shre 1991 Age and progression of volcanism, Wrangell volcanic field, Alaska. *Bulletin* of Volcanology. 53(1): 29-44.

Shackley, M.S.

2008 Archaeological Petrology and the Archaeometry of Lithic Materials. Archaeometry 50(2):194-215.

Shackley, M. Steven.

2011 An Introduction to X-Ray Fluorescence (XRF) Analysis in Archaeology *In*, X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology. M. Steven Shackley, ed. Pp. 7-44. New York: Springer.

Slobodina, Natalia S., Joshua D. Reuther, Jeff Rasic, John P. Cook, and Robert J. Speakman.

2009 Obsidian Procurement and Use at the Dry Creek Site (HEA-005), Interior Alaska. Current Research in the Pleistocene 26:115-117.

Speakman, Robert J., Charles E. Holmes, and Michael D. Glascock 2007 Source Determination of Obsidian Artifacts from Swan Point (XBD-156), Alaska. Current Research in the Pleistocene. 24:143-145.

Yesner, David R., Kristine J. Crossen, Norman A. Easton

2010 Geoarchaeological and Zooarchaeological Correlates of Early Beringian Artifact Assemblages: Insights from the Little John Site, Yukon *In* From the Yenisei to the Yukon: Interpreting Lithic Assemblage Variability in the Late Pleistocene/Early Holocene Beringia. Ted Goebel and Ian Buvit, eds. Pp. 308-322. Texas A&M Press: United States.

Appendix A.

PXRF Elemental Data

Sample	MnKa1	FeKa1	ZnKa1	GaKa1	ThLa1	RbKa1	SrKa1	YKa1	ZrKa1	NbKa1
KdVo-6-01	779	35359	85	13	14	168	201	34	312	16
KdVo-6-121	0	3816	12	13	8	73	51	26	137	10
KdVo-6-125	993	32569	150	17	4	64	594	32	520	13
KdVo-6-1308	1170	35684	106	14	5	65	628	33	571	14
KdVo-6-1311	802	68179	159	0	11	58	394	32	590	27
KdVo-6-1338	1177	32138	114	15	2	61	565	32	557	15
KdVo-6-1341	1415	38485	140	15	3	65	657	33	547	18
KdVo-6-1376	1825	57428	98	3	8	46	774	33	419	32
KdVo-6-1378	675	14205	111	18	7	79	600	13	269	8
KdVo-6-	934	38494	111	13	3	48	455	25	234	13
139(2)										
KdVo-6-1394	971	36366	100	13	1	54	423	22	232	13
KdVo-6-140	804	43782	102	11	0	35	647	19	215	12
KdVo-6-	81	8279	59	6	0	3	119	6	29	0
1404(a)										
KdVo-6-	324	10886	49	9	0	2	151	6	28	0
1404(b)										
KdVo-6-	1082	35569	146	15	3	58	616	29	472	15
1411(.1)										
KdVo-6-	988	35368	177	16	2	60	625	31	505	15
1411(.2)										
KdVo-6-	1076	32017	90	14	5	59	595	31	487	14
1450(.1)										
KdVo-6-	801	37860	131	14	3	53	478	24	239	14
1450(.2)										
KdVo-6-1451	944	45217	165	14	3	48	517	24	230	12
KdVo-6-1452	1152	62304	51	2	2	40	410	5	50	1
KdVo-6-1472	1198	36541	91	13	24	200	3490	34	422	21
KdVo-6-1475	1714	45585	82	9	0	20	449	18	130	5
KdVo-6-1685	930	35858	79	12	2	49	462	25	229	13
KdVo-6-1700	1105	41629	102	12	2	47	479	25	240	16
KdVo-6-1736	589	63264	129	6	6	60	482	24	297	15
KdVo-6-1803	49	16146	169	18	0	27	91	3	42	4
KdVo-6-1865	1017	31415	87	14	4	58	553	31	541	14
KdVo-6-2009	1050	33663	94	14	6	57	612	31	473	15
KdVo-6-2112	0	5020	9	10	0	0	50	10	49	3
KdVo-6-2156	0	6586	7	14	18	176	21	36	113	11
KdVo-6-2157	250	14104	52	16	23	224	553	16	195	11
KdVo-6-2159	732	45754	90	10	8	63	454	28	336	12
KdVo-6-2162	808	49622	69	8	2	53	537	26	308	13
KdVo-6-2164	867	28435	60	11	0	1	199	10	84	3
KdVo-6-2246	480	42451	123	9	3	55	437	21	158	10
KdVo-6-2247	936	37923	77	11	3	51	472	24	240	12
KdVo-6-2248	1079	42487	182	16	1	6	607	24	128	6
KdVo-6-2260	733	54939	77	7	2	50	1062	7	91	1
KdVo-6-2265	786	30440	105	15	6	57	779	32	380	22
KdVo-6-2530	837	40072	197	17	0	52	472	22	241	17
KdVo-6-2534	741	33028	108	15	2	50	432	24	236	14
KdVo-6-2540	0	4107	26	8	0	19	23	3	33	2
KdVo-6-2546	685	55093	134	9	2	69	755	15	259	15
KdVo-6-2560	1150	34661	96	13	7	60	667	30	484	17
KdVo-6-2561	245	71532	139	0	0	16	331	7	131	11

	4440	07054	105	45	~	C 4	000	25	400	4.4
KUV0-0-2502	1112	37254	135	15	5	64	696	35	492	14
KdVo-6-	1100	36025	148	16	5	58	664	35	486	15
2563(.1)										
KdV/0-6-	1152	37467	133	14	7	66	688	31	483	14
	1152	57407	100	17	'	00	000	51	400	17
2564(.1)										
Kdvo-6-	1323	38419	127	14	4	64	730	35	501	15
2564(2)						-				-
200+(.2)	000	00000	F 4	10	7	00	000	20	504	40
Kavo-6-25/1	602	26389	54	13	1	83	238	36	504	16
KdVo-6-2572	1254	33879	114	14	6	59	638	30	474	17
KdVo-6-2573	1165	36581	103	13	10	54	679	30	425	14
	1540	40170	100	11	0	40	225	15	110	0
KUV0-0-	1540	49172	125	11	0	42	235	15	110	0
2574(.1)										
KdVo-6-	583	32068	102	14	15	179	1547	21	209	9
2574(2)										-
2374(.2)						10			100	
KdV0-6-2577	934	61259	111	6	0	46	328	9	128	6
KdVo-6-	601	43083	81	9	7	97	34	42	654	21
2578(1)			-	-		-	-			
2070(.1)	4440	50544	100	~		40	0.4.4	10	40.4	•
Kavo-6-	1443	52544	102	8	1	40	241	16	124	6
2578(.2)										
KdVo-6-	930	62366	132	6	0	48	368	13	141	8
	000	02000	102	U	Ŭ	10	000	10		U
2578(.3)										_
KdVo-6-	1124	45132	129	12	0	45	229	20	127	6
2578(.4)										
$KdV_{0} \in 2570$	064	25016	00	10	2	56	462	24	220	14
Kuv0-0-2579	904	33010	09	15	2	50	403	24	230	14
KdV0-6-	1085	37563	148	14	2	66	679	33	496	15
2580(.1)										
KdV/0-6-	1024	40162	170	16	3	55	772	30	306	16
	1024	40102	170	10	0	00	112	00	000	10
2580(.2)										
KdVo-6-	1401	43700	270	20	7	70	766	31	510	16
2580(.3)										
KdV/0.6.2581	10/13	38083	73	11	0	27	287	12	100	6
Ruv0-0-2501	1045	30903	75	11	0	21	207	12	100	0
KdVo-6-2591	1122	32348	92	13	4	63	546	34	596	16
KdVo-6-2619	0	6387	112	13	0	1	122	3	20	1
KdV/0 6 2621	969	27151	121	15	3	10	127	22	242	16
KUV0-0-2021	000	37131	151	10	5	49	437	23	242	10
Kavo-6-2622	948	35235	150	16	3	55	461	24	236	12
KdVo-6-2623	720	30569	158	17	2	87	263	37	527	18
KdV0-6-2624	131	5385	61	12	0	2	162	3	25	0
	101	0000	100	47	0	2	102	0	20	40
Kavo-6-2625	1283	39545	186	17	3	61	682	33	494	16
KdVo-6-2626	606	33180	166	18	6	90	269	39	553	18
KdVo-6-2627	0	3959	81	6	0	1	137	3	21	0
	501	24115	102	10	7	00	200	11	547	17
	501	54115	105	10	'	90	200	41	547	17
2628(.1)										
KdVo-6-	1307	39579	134	14	9	71	718	32	544	13
2628(2)										
	0	5000	117	11	0	1	171	2	20	0
KUV0-0-	0	0000	117	11	0	1	171	3	20	0
2629(.1)										
KdVo-6-	854	67811	236	8	0	77	153	15	73	6
2620(2)				°,	·					·
2029(.2)		00504		4.0	_					10
KdV0-6-2637	638	30501	161	18	5	89	272	40	541	16
KdVo-6-2638	775	40702	89	11	0	32	681	13	128	3
KdV0-6-2643	903	34073	85	13	4	53	444	27	237	13
	000	0400	44			00	440	2	201	
navo-6-2644	U	3409	41	9	U	U	143	3	22	U
KdVo-6-2645	1054	35292	137	15	3	60	621	30	530	14
KdVo-6-2646	863	36344	103	13	2	52	727	27	373	14
KdV/o 6 2647	000	26040	151	16	2	51	120	21	220	15
NUVU-0-204/	099	30010	101	10	5	51	430	21	230	15
KdVo-6-2652	508	32618	181	19	1	101	293	38	561	17
KdVo-6-2655	892	45415	256	19	5	55	469	21	238	15
KdV0-6-2657	886	32880	87	13	0	50	427	24	245	13
	022	27724	107	12	5	57	111	25	260	16
	933	5//31	107	13	5	57	44	20	200	10
2658(.1)										

2658(2) n n 58 487 25 245 12 KdVo-6-2661 1023 33579 96 13 3 52 419 23 247 15 KdVo-6-2666 896 35012 97 13 1 50 430 21 233 13 KdVo-6-2668 1056 34677 146 16 2 53 629 29 421 14 KdVo-6-2668 1057 122 13 0 34 136 10 76 3 KdVo-6-2668 1057 146 16 2 53 629 29 421 14 Kdvo-6-2671 1047 4278 283 20 5 76 626 31 600 16 Kdvo-6-2674 1092 44490 247 18 9 58 847 30 96 14 Kdvo-6-2678 1045 35360 152 16 4 54 661 11 16 4 665 30 425 <
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2658(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2666(.1) -<
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
KdVo-6-2675 791 35414 135 15 4 54 661 21 237 16 KdVo-6-2678 1045 35360 152 16 4 54 655 30 425 11 KdVo-6-2682 326 25079 79 9 0 0 134 13 107 4 KdVo-6- 450 25749 79 9 0 0 143 15 116 4 2683(.2) 35129 39 10 0 2 165 15 148 5 KdVo-6- 906 39187 233 19 1 57 472 22 252 14 Z687(.1) 112 42265 234 19 2 49 666 23 309 14 Z687(.2) 175 18655 96 12 0 25 82 6 46 2 KdVo-6- 1035 42089 220 18 6 59 480 24 232 13
KdVo-6-2678104535360152164546553042511KdVo-6-268232625079799001341310742683(1)25749799001431511642683(1)11250663931272559648111505KdVo-6-26841250663931272559648111505KdVo-6-2684906391872331915747222252142687(.1)1412422652341924966623309142687(.2)141242265234192496662330914KdVo-6-1035420892201865948024232132689(.2)133440506279229687103354017KdVo-6-1154402221861766468228525172689(.3)Kdvo-6-1541599580021696Kdvo-6-82336154102131544832525314Kdvo-6-823361541021312969718186102771(2)766 <t< td=""></t<>
KdVo-6-2682 CdS3(1)326 KdVo-6- 2574925079 7979 912 900134 1313 107 143107 44 4 42683(.1) KdVo-6- 2683(.2)54035129391002165151485KdVo-6- 2687(.1) KdVo-6-2684125066393127 391872559648111505KdVo-6- 2687(.1) KdVo-6-141242265234192496662330914KdVo-6- 2687(.2) KdVo-6-103542089220186594802423213C689(.2) KdVo-6-133440506279229687103354017KdVo-6- 2688(.3) KdVo-6-115440222186176646822852517KdVo-6- 270491938564101131544832525314KdVo-6- 2710(2) KdVo-6-82336154102131296971818610Z710(2) KdVo-6-78395471003429446332731(.1)7567KdVo-6- Z731(.3)14424889726817151687763050815
KdVo-6- 2683(.1) 450 25749 79 9 0 0 143 15 116 4 2683(.2) 540 35129 39 10 0 2 165 15 148 5 KdVo-6- 2683(.2) 1250 66393 127 2 5 59 648 11 150 5 KdVo-6- 2687(.1) 906 39187 233 19 1 57 472 22 252 14 KdVo-6- 2687(.2) 1412 42265 234 19 2 49 666 23 309 14 Z689(.2) 175 18665 96 12 0 25 82 6 46 2 KdVo-6- 1035 42089 220 18 6 59 480 24 232 13 Z689(.1) 154 40222 186 17 6 64 682 28 525 17 KdVo-6- 1154 40222 186 17 13 1 54 483
2683(.1) 540 35129 39 10 0 2 165 15 148 5 2683(.2) 1250 66393 127 2 5 59 648 11 150 5 KdVo-6-2684 1250 66393 127 2 5 59 648 11 150 5 KdVo-6- 906 39187 233 19 1 57 472 22 252 14 2687(.1) 1412 42265 234 19 2 49 666 23 309 14 KdVo-6- 1035 42089 220 18 6 59 480 24 232 13 KdVo-6- 1334 40506 279 22 9 68 710 33 540 17 2689(.2) 1154 40222 186 17 6 64 682 28 525 17 2689(.3) KdVo-6- 215 85 8 0 0 2 1 69 <
KdVo-6- 2683(.2) 540 35129 39 10 0 2 165 15 148 5 KdVo-6-2684 1250 66393 127 2 5 59 648 11 150 5 KdVo-6- 2687(.1) 39187 233 19 1 57 472 22 252 14 Z687(.1) KdVo-6- 1412 42265 234 19 2 49 666 23 309 14 KdVo-6- 1035 42089 220 18 6 59 480 24 232 13 2689(.1) KdVo-6- 1334 40506 279 22 9 68 710 33 540 17 KdVo-6- 1154 40222 186 17 6 64 682 28 525 17 Z689(.2) KdVo-6- 1154 40222 186 17 6 64 682 28 525 17 Z689(.3) 11 13 1 29 697 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
KdVo-6-2684 1250 66393 127 2 5 59 648 11 150 5 KdVo-6- 906 39187 233 19 1 57 472 22 252 14 2687(.1) KdVo-6- 1412 42265 234 19 2 49 666 23 309 14 2687(.2) KdVo-6- 1035 42089 200 18 6 59 480 24 232 13 KdVo-6- 1035 42089 220 18 6 59 480 24 232 13 KdVo-6- 1035 42089 220 18 6 59 480 24 232 13 Z689(.1) 13 16 17 6 64 682 28 525 17 Z689(.2) 154 40222 186 17 6 64 682 28 525 17 Z689(.3) 15 8 0 0 2 1 69 6 <
KdVo-6- 2687(.1)906 39187 233 19157 472 22 252 14KdVo-6- 2687(.2)1412 42265 234 192496662330914KdVo-6-2688175186659612025826462KdVo-6- 2689(.1)1035 42089 220186594802423213Z689(.1)133440506279229687103354017KdVo-6- 2689(.3)115440222186176646822852517KdVo-6-2703015969580021696KdVo-6-270491938564101131544832525314KdVo-6-82336154102131296971818610Z710(2)7162917567711112731(.1)111111111111KdVo-6-7839547100342944632731(.1)1442488972681715687763050815
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
KdVo-6- 2687(.2) 1412 42265 234 19 2 49 666 23 309 14 KdVo-6-2688 175 18665 96 12 0 25 82 6 46 2 KdVo-6- 1035 42089 220 18 6 59 480 24 232 13 2689(.1) KdVo-6- 1334 40506 279 22 9 68 710 33 540 17 KdVo-6- 1154 40222 186 17 6 64 682 28 525 17 2689(.3) 115969 5 8 0 0 2 1 69 6 KdVo-6-2704 919 38564 101 13 1 54 483 25 253 14 KdVo-6- 823 36154 102 13 1 29 697 18 186 10 2710(2) KdVo-6- 827 44404 109 11 1 31 714
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
KdVo-6-2688 175 18665 96 12 0 25 82 6 46 2 KdVo-6- 1035 42089 220 18 6 59 480 24 232 13 2689(.1) 1334 40506 279 22 9 68 710 33 540 17 2689(.2) KdVo-6- 1154 40222 186 17 6 64 682 28 525 17 2689(.3) KdVo-6-2703 0 15969 5 8 0 0 2 1 69 6 KdVo-6-2704 919 38564 101 13 1 54 483 25 253 14 KdVo-6- 823 36154 102 13 1 29 697 18 186 10 2710(2) KdVo-6- 827 44404 109 11 1 31 714 18 211 11 2710(2) KdVo-6- 7 8395 47 10 0
KdVo-6- 1035 42089 220 18 6 59 480 24 232 13 2689(.1) KdVo-6- 1334 40506 279 22 9 68 710 33 540 17 2689(.2) KdVo-6- 1154 40222 186 17 6 64 682 28 525 17 2689(.3) 0 15969 5 8 0 0 2 1 69 6 KdVo-6-2703 0 15969 5 8 0 0 2 1 69 6 KdVo-6-2704 919 38564 101 13 1 54 483 25 253 14 KdVo-6- 823 36154 102 13 1 29 697 18 186 10 2710(2) 44404 109 11 1 31 714 18 211 11 KdVo-6- 7 8395 47 10 0 34 29 4 46
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
KdVo-6- 1334 40506 279 22 9 68 710 33 540 17 2689(.2) 1154 40222 186 17 6 64 682 28 525 17 2689(.3) KdVo-6-2703 0 15969 5 8 0 0 2 1 69 6 KdVo-6-2704 919 38564 101 13 1 54 483 25 253 14 KdVo-6- 823 36154 102 13 1 29 697 18 186 10 2710(2) KdVo-6- 827 44404 109 11 1 31 714 18 211 11 2711(2) KdVo-6- 7 8395 47 10 0 34 29 4 46 3 2731(.1) KdVo-6- 1043 33512 141 16 1 56 670 27 457 13 2731(.2) KdVo-6- 1442 48897 268 <
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
KdVo-6- 1154 40222 186 17 6 64 682 28 525 17 2689(.3) KdVo-6-2703 0 15969 5 8 0 0 2 1 69 6 KdVo-6-2704 919 38564 101 13 1 54 483 25 253 14 KdVo-6- 823 36154 102 13 1 29 697 18 186 10 2710(2) 7 102 13 1 31 714 18 211 11 2711(2) 7 56 7 7 162 91 7 56 7 KdVo-6- 7 8395 47 10 0 34 29 4 46 3 2731(.1) 7 6 670 27 457 13 2731(.2) 76 30 508 15 KdVo-6- 1442 48897 268 17 15 68 776 30 508 15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
KdVo-6-2703 0 15969 5 8 0 0 2 1 69 6 KdVo-6-2704 919 38564 101 13 1 54 483 25 253 14 KdVo-6- 823 36154 102 13 1 29 697 18 186 10 2710(2) 44404 109 11 1 31 714 18 211 11 Z711(2) 484 7754 123 20 7 162 91 7 56 7 KdVo-6- 7 8395 47 10 0 34 29 4 46 3 2731(.1) 400 141 16 1 56 670 27 457 13 Z731(.2) 48897 268 17 15 68 776 30 508 15 Z731(.3) 6897 268 17 15 68 776 30 508 15
KdVo-6-2704 919 38564 101 13 1 54 483 25 253 14 KdVo-6- 823 36154 102 13 1 29 697 18 186 10 Z710(2) KdVo-6- 827 44404 109 11 1 31 714 18 211 11 Z711(2) KdVo-6- 7 8395 47 10 0 34 29 4 46 3 Z731(.1) KdVo-6- 1043 33512 141 16 1 56 670 27 457 13 Z731(.2) KdVo-6- 1442 48897 268 17 15 68 776 30 508 15
KdVo-6- 823 36154 102 13 1 29 697 18 186 10 2710(2) KdVo-6- 827 44404 109 11 1 31 714 18 211 11 2711(2) KdVo-6-2724 484 7754 123 20 7 162 91 7 56 7 KdVo-6- 7 8395 47 10 0 34 29 4 46 3 2731(.1) KdVo-6- 1043 33512 141 16 1 56 670 27 457 13 2731(.2) KdVo-6- 1442 48897 268 17 15 68 776 30 508 15 2731(.3) - - - - - - - - - - - - - 15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
KdVo-6- 827 44404 109 11 1 31 714 18 211 11 2711(2) KdVo-6-2724 484 7754 123 20 7 162 91 7 56 7 KdVo-6- 7 8395 47 10 0 34 29 4 46 3 2731(.1) 10 0 34 29 4 46 3 2731(.2) 1043 33512 141 16 1 56 670 27 457 13 2731(.2) KdVo-6- 1442 48897 268 17 15 68 776 30 508 15 2731(.3) -
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
KdVo-6-2724 484 7754 123 20 7 162 91 7 56 7 KdVo-6- 7 8395 47 10 0 34 29 4 46 3 2731(.1) KdVo-6- 1043 33512 141 16 1 56 670 27 457 13 2731(.2) KdVo-6- 1442 48897 268 17 15 68 776 30 508 15 2731(.3)
KdVo-6- 7 8395 47 10 0 34 29 4 46 3 2731(.1) KdVo-6- 1043 33512 141 16 1 56 670 27 457 13 2731(.2) KdVo-6- 1442 48897 268 17 15 68 776 30 508 15 2731(.3) 15 68 776 30 508 15
2731(.1) KdVo-6- 1043 33512 141 16 1 56 670 27 457 13 2731(.2) KdVo-6- 1442 48897 268 17 15 68 776 30 508 15 2731(.3) Image: Constraint of the second sec
K0V0-6- 1043 33512 141 16 1 56 670 27 457 13 2731(.2) KdV0-6- 1442 48897 268 17 15 68 776 30 508 15 2731(.3) Image: Constraint of the second
2731(.2) KdVo-6- 1442 48897 268 17 15 68 776 30 508 15 2731(.3) 2731(.3) 268 17 15 68 776 30 508 15
2731(.3) 1442 46697 266 17 15 66 776 50 506 15
2/31(.3)
KdVc - 0.2740 119 37872 107 10 5 55 405 22 239 13
Kdvo = 0.244 0.02 0.0103 2.07 0 0 4.5 2.90 1.2 1.22 7
$KdV_{0} = 2760$ (237) 36139 (5) 11 5 9 1460 19 217 12 (6) (6) (6) (6) (6) (6) (6) (6) (6) (6)
KdV_{0} = 2752 002 40033 221 10 0 0 35 497 22 230 13
$KdV_0 = 2776 = 740 = 67796 = 04 = 0 = 5 = 10 = 2662 = 20 = 166 = 24$
KdVo-6-2778 1047 36065 104 13 1 45 602 22 220 12
KdVo 6 2770 8 21217 130 17 6 140 207 10 415 12
KdVo-6-2781 870 37985 181 17 0 55 763 20 377 16
KdVo-6-2784 1101 37537 00 13 4 54 728 33 299 11
KdVo-6- 1346 37164 205 18 4 67 630 34 603 17
[4700(.1)] [46] 9413] 149] 14] 0] 34] 23] 4] 47] 0] 14] 0] 34] 23] 4] 47] 0] 14] 0] 14] 0] 14] 0] 14] 0] 14] 0] 14] 0] 14] 0] 14] 0] 14] 14
KdVo-6- 1324 46575 251 18 8 76 803 29 517 17

2787(1)										
KdV0-6-	903	37702	158	15	2	51	466	23	242	13
2787(2)	000	01102	100	10	2	01	400	20	272	10
$KdV_{0} = 6.2780$	1000	21207	04	14	0	45	564	22	204	10
Kuvo-0-2709	770	21454	34 77	14	7	40	200	23	294	10
KUV0-0-2790	112	31454	//	13	1	95	300	44	554	10
KdVo-6-2793	866	41/22	220	18	3	54	484	25	245	13
KdVo-6-	968	36137	226	20	0	32	778	22	234	8
2802(.1)										
KdVo-6-	1016	30597	174	19	0	35	764	18	232	10
2802(.2)										
KdVo-6-	705	50802	203	14	1	34	760	18	227	9
2802(.3)										
KdVo-6-	544	51800	88	8	0	63	426	12	125	5
2805(.1)										
KdVo-6-	474	56557	99	7	2	58	423	12	117	7
2805(.2)							-			
Kdvo-6-2806	607	47151	108	11	4	37	728	18	223	13
KdV0-6-	031	31870	160	18	4	55	526	32	508	13
2807(1)	001	01070	100	10	т	00	020	02	000	10
2007(.1)	909	20271	145	17	0	20	683	10	221	10
2007(2)	090	30271	145	17	0	29	005	10	231	12
2007(.2)	700	45700	05	10	~	22	745	04	040	0
KUV0-0-	769	45709	95	10	0	33	/15	21	212	9
2807(.3)	1050								o / =	4.0
KdVo-6-	1058	38429	302	24	0	31	798	21	247	10
2809(.1)					_					
KdVo-6-	847	33510	184	18	0	36	779	17	248	11
2809(.2)										
KdVo-6-2813	454	59120	113	7	5	60	479	11	122	7
KdVo-6-2816	1114	35735	89	12	3	58	670	32	471	15
KdVo-6-2817	112	72799	250	0	9	25	614	5	235	23
KdVo-6-2819	939	35160	88	13	3	55	669	31	413	13
KdVo-6-2820	1156	37122	82	12	7	53	725	30	386	13
KdVo-6-2822	988	33027	153	17	7	61	584	31	558	16
KdVo-6-2823	958	37867	148	15	2	56	473	24	253	14
KdVo-6-2824	1210	43173	258	20	2	59	484	22	242	10
KdVo-6-	088	45555	200	16	5	63	500	27	256	11
2825(1)	300	-0000	220	10	5	00	500	21	200	
2020(.1) KdV/o 6	1214	41500	220	10	4	57	109	22	2/2	1/
2025(2)	1214	41500	239	19	4	57	490	25	243	14
2020(.2)	000	20405	150	16	4	E 2	404	25	250	11
KUV0-0-	000	36495	100	10	1	55	401	25	200	11
2826(.1)	1005	44055	400	40	~	F7	40.4	40	0.40	
K0V0-6-	1025	41655	190	16	2	57	464	19	242	14
2826(.2)				10		=0			0.5.4	4.0
KdVo-6-	935	37663	158	16	1	59	454	23	251	13
2827(.1)										
KdVo-6-	937	37748	200	18	3	57	477	25	253	12
2827(.2)										
KdVo-6-	0	7096	178	17	0	0	81	1	23	2
2827(.3)										
KdVo-6-2829	897	35402	147	16	4	55	448	23	240	14
KdVo-6-2830	1094	32912	96	14	5	59	619	28	438	13
KdVo-6-2831	1250	35675	95	13	3	48	685	31	372	15
KdVo-6-	1102	32698	84	13	5	66	568	34	610	19
2834(1)			.					• •	0.0	
KdVo-6-	964	39305	192	17	2	57	470	26	247	14
2834(2)	007	00000	1.52		-	0,		20	<u>-</u>	
KdV/0-6-	944	38855	186	17	5	56	475	22	242	12
2834(2)	344	30000	100		5	50	4/0	22	242	12
2004(.3) KdVa 6	1117	11501	251	10	1	66	500	25	254	15
2924(4)		44001	201	19	1	00	009	20	204	10
2034(.4)										

KdVo-6-	980	32676	139	16	4	56	628	31	520	13
2837(.1)					-					
KdVo-6-	1134	46819	224	17	2	38	489	41	289	12
2837(2)		10010	·		-	00		••	200	
KdV0-6-	778	36586	154	15	0	50	426	26	244	13
2927(2)	110	30300	104	15	0	50	720	20	277	15
2037(.3)	057	20070	100	10	~	F 4	444	24	047	10
KUV0-0-	857	30070	188	18	2	54	441	24	247	12
2837(.4)					_			_		_
KdV0-6-	1667	61949	220	10	0	13	368	1	108	1
2837(.5)										
KdVo-6-2838	740	26777	59	13	0	33	77	9	99	5
KdVo-6-	822	36814	107	13	4	54	446	22	233	12
2839(.1)										
KdVo-6-	760	40672	112	13	1	47	492	25	235	14
2839(.2)										
KdVo-6-	928	38168	143	15	2	54	469	22	249	15
2840(.1)										
KdVo-6-	900	38074	130	14	2	54	463	19	241	15
2840(2)					_	•				
KdV0-6-	1027	37920	89	12	5	54	475	21	249	14
2840(3)	1027	01020	00	12	0	04	475	21	275	17
20+0(.3)	970	20102	156	15	0	50	102	21	220	12
2940(4)	0/9	39192	150	15	0	50	492	21	230	15
2040(.4)	010	10111	440	40	~	00	740	40	000	
KUV0-0-	618	43141	112	12	0	32	/19	10	209	11
2841(2)							- · -			. –
KdVo-6-2843	646	40070	302	24	18	184	317	41	330	15
KdVo-6-2846	779	34625	201	19	6	94	294	40	569	16
KdVo-6-2848	447	27823	174	20	14	204	150	44	333	19
KdVo-6-2849	1044	36383	153	16	6	64	650	32	489	14
KdVo-6-2853	899	40983	107	12	3	49	485	23	237	13
KdVo-6-2854	828	37029	141	13	0	5	246	11	93	4
KdVo-6-	758	47294	89	10	0	33	707	20	225	13
2856(.1)										
KdVo-6-	1132	40994	259	19	8	68	577	32	606	16
2856(.2)					-		•••			
KdVo-6-2857	219	47250	187	12	0	38	30	2	43	1
KdVo-6-	773	39422	94	12	Ő	20	321	19	129	6
2859(1)	110	00122	01	12	Ŭ	20	021	10	120	Ũ
KdVo-6-	871	46121	124	11	5	22	381	10	133	6
2850(2)	0/1	70121	127		5	22	501	15	100	0
Z009(.Z)	1055	22020	105	15	1	54	602	20	511	16
KUV0-0-2001	1055	33020	120		1	04 450	003	30	014	10
KUV0-0-2002	034	33000	120	10	24	155	144	27	211	11
KUV0-0-2803	1082	30401	90	13	4	50	701	29	3//	13
KUV0-0-2805	1084	35760	105	13	4	53	704	30	3/4	12
KdV0-6-2867	1838	42487	/5	10	0	52	389	16	117	3
KdVo-6-2868	625	41073	130	11	2	118	648	11	100	7
KdVo-6-2916	737	43846	157	14	0	32	730	12	130	1
KdVo-6-2917	836	32961	158	17	4	56	439	22	238	13
KdVo-6-2918	0	4845	74	10	0	26	27	5	37	3
KdVo-6-2919	1077	32613	83	12	6	67	705	35	554	13
KdVo-6-2921	1123	35977	95	12	5	55	700	31	417	13
KdVo-6-2922	0	7107	43	11	-5	29	25	3	40	2
KdVo-6-2988	793	52991	208	13	7	72	503	25	345	14
KdVo-6-	860	45625	166	13	24	176	257	28	187	17
2995(2)	'			-				-		
KdVo-6-2997	666	45333	148	13	0	34	793	22	225	10
KdV0-6-2008	606	54386	230	15	7	76	510	24	343	16
KdV0-6-2990	1055	37256	200	18	à	71	508	35	644	13
KdVo 6 2001	666	3/710	102	13	18	1/2	176	30	220	15
KdVa 6 2004	1106	34/10	120	14	5	56	664	21	161	10
RUV0-0-3004	0011	30104	102	14	Э	00	004	31	401	14

KdVo-6-3032	598	52247	97	9	5	49	548	21	234	13
KdV0-6-3034	752	43177	aa	11	10	107	719	15	164	11
KdVo 6-3035	804	58100	65	1	0	27	103	8	1/2	11
KdVo 6 2026	004	27606	05	4	2	10	195	24	220	12
KUV0-0-3030	045	37000	97		2	40	400	24	239	13
Kavo-6-3037	884	49362	140	11	5	67	501	28	333	11
KdVo-6-3065	826	51118	228	16	0	37	302	13	104	5
KdVo-6-3066	0	9884	134	21	1	96	16	20	58	2
KdVo-6-3070	598	66030	81	2	0	5	37	4	91	2
KdVo-6-3071	578	54371	89	7	0	13	596	12	80	3
KdVo-6-3082	535	70140	115	0	0	1	175	14	202	7
KdVo-6-	2010	65658	174	0	4	75	475	21	347	26
3084(2)				· ·					•	
KdV/0-6-3086	831	68100	110	0	0	٩	205	a	106	7
KdVo 6 3088	047	60057	172	0	1	35	200	11	222	0
Kuvo-0-3000	947	57000	170	0	1	35	009	14	407	9
Kavo-6-3096	845	57226	122	8	3	45	603	12	137	10
KdV0-6-	1264	39450	72	11	3	36	1045	14	157	4
3104(.1)										
KdVo-6-	706	45952	55	8	4	89	1221	18	206	6
3104(.2)										
KdVo-6-	673	30182	92	14	0	0	109	18	114	4
3104(.3)										
KdV0-6-	659	46346	45	8	0	11	134	10	105	4
3104(4)	000	10010	10	U	Ũ		101		100	•
KdVa 6 2106	500	57040	160	0	0	0	110	0	57	2
Kuvo-0-3100	-099	07940	102	10	0	0	744	10	100	2
KUV0-6-3107	917	3/9/1	83	12		20	744	12	139	9
KdV0-6-3108	1203	53322	75	1	3	34	643	13	1/1	11
KdVo-6-3109	758	39920	102	12	4	69	1800	12	201	5
KdVo-6-3110	826	30290	100	15	9	103	134	29	497	18
KdVo-6-3113	1123	46467	233	17	3	54	516	24	245	14
KdVo-6-3115	755	48918	130	11	5	69	490	28	337	10
KdVo-6-3116	699	48139	133	12	8	66	478	25	326	13
KdVo-6-3117	758	50611	179	13	3	64	504	25	330	13
KdVo-6-3118	763	52896	212	14	5	74	530	26	327	15
KdVo 6 3110	800	50771	202	14	7	63	505	24	337	15
Kuvo-0-3119	1245	40105	202	14	6	05	200	40	115	15
KUV0-0-3120	1245	42120	11	10	0	05	399	12	115	/
KOVO-6-3123	506	27861	48	11	0	0	416	20	157	8
KdV0-6-3133	700	70956	83	0	0	/	221	14	140	5
KdVo-6-3136	773	62184	88	2	0	3	687	10	120	4
KdVo-6-3137	1130	53269	78	7	0	9	428	10	76	3
KdVo-6-3138	572	44084	118	10	8	85	535	22	698	20
KdVo-6-3139	956	38568	79	11	0	49	459	25	240	11
KdVo-6-3140	-68	69100	98	0	3	3	190	1	65	3
KdVo-6-3144	788	39111	241	19	11	97	312	42	571	18
KdVo-6-3146	966	36858	145	15	0	56	459	22	240	13
KdV0-6-3255	906	38846	97	12	1	47	460	24	228	10
KdVo 6-3680	970	27715	80	1/	1	61	510	27	562	16
KdVo 6 2691	970	25511	00	12	- 2	40	120	24	244	15
Kuvo-0-3001	4000	20000	00	13	5	49	430	24	241 570	10
K0V0-6-530	1203	32028	99	14	1	65	548	33	5/3	14
KdV0-6-531	710	44560	95	11	3	30	679	20	218	11
KdVo-6-621	636	71196	118	0	0	1	173	7	41	-1
KdVo-6-716	689	48877	91	9	3	47	501	22	281	10
KdVo-6-758	904	64070	118	5	0	5	132	8	77	5
KdVo-6-96	840	37486	94	13	4	43	460	26	237	11
KdVo-6-97	960	36248	82	12	2	51	460	24	236	15
KdVo-6-a1	1118	54859	153	10	1	1	498	17	132	8
KdVo-6-d2	546	33960	29	7	0	0	176	11	87	4
KdV0-6-03	768	43964	92	11	3	84	596	14	121	5
KdVo_6_q5	2020	14562	34	10	1	7	415	36	43	ő
	2030	21022	00	10	7	00	216	21		10
	2007	21032	00		6	00	210	20	200	19
<u>NUVU-94</u>	102	04003	109	O	Э	00	401	29	300	17